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SUMMARY 
An extended k--E model (to include low-Reynolds-number regions) employing weighting functions is 
presented. Wall functions for the near-wall zones are developed giving correct boundary values for the shear 
stress and k--E. A finite element model using a penalty formulation for incompressible turbulent flow is 
applied to solve a flow between two plates. Results with mesh boundaries situated in the near-wall region 
and at the wall are compared with measured values. 

KEY WORDS k--E Wall functions Finite element 

1 INTRODUCTION 

The design task of real life flows is a difficult undertaking since there exist no reliable tools for 
predicting correctly the complex flow patterns. We have detailed experimental data for only 
simple flows but any empirical generalization to complex geometries is mostly erroneous. 
A designer welcomes the arrival of numerical simulation packages which allow one to obtain 
a better understanding of the velocity, vorticity and pressure profiles. The numerical simulation 
field is young, active and highly promising owing to fast-computing developments. 

Turbulent flows are represented by the Navier-Stokes and continuity equations if the influence 
of all fluctuations, large- and small-scale, is taken into account. However, the available computa- 
tional tools are not capable of solving these equations since it is not possible to represent correctly 
the small-scale fluctuations which are essential for simulating turbulence effects. 

For practical applications one is content to predict large-scale fluctuations, often referred to as 
averaged quantities. However, these quantities do not satisfy the Navier-Stokes equations and 
we know of no other set of equations which may be employed to predict the evolution of averaged 
quantities. The present-day research efforts are thus devoted to constructing a mathematical 
model in terms of large-scale fluctuations. In this model the influence of small-scale fluctuations, 
called the turbulence effect, is correctly included without defining the small-scale quantities. The 
modelling of turbulence effects requires skill, inspiration and a correct understanding of these 
fluctuations. 

The finite element modelling of turbulent flows is still in the early stages of development. The 
averaging process in the context of finite element discretization (or finite-difference-like discretiz- 
ation) has led to large-eddy simulation (LES) models. The essential idea is that large fluctuations 
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are simulated by finite element approximations (grid-size eddies) and small eddies relative to the 
grid size are modelled by empirical relations.' -' This approach although quite promising, cannot 
be applied successfully to engineering problems owing to the limited computing capabilities of 
today. 

In this study we have opted for the averaged Navier-Stokes equations using the Reynolds 
time-filtering or time-averaging technique, which requires a correct modelling of turbulence (the 
closure problem). Reynolds" manipulated the Navier-Stokes and continuity equations to obtain 
a set of equations having an extra term corresponding to averaged products of fluctuating 
velocity components (called Reynolds stresses). Reynolds was interested in statistically stationary 
flows obtained by time averaging. The role of products of spatial velocity fluctuations is not clear. 
It may be implicitly assumed that Reynolds stresses include all turbulence effects. The averaged 
equations may be associated with the ensemble average." We consider an ensemble of statist- 
ically independent flows subjected to the same set of boundary and initial conditions. The 
quantities, measured at the same time and position for different flows, are averaged by simply 
adding the values and dividing by the number of flows. We assume that averaged quantities have 
large-scale spatial-temporal variations and that Reynolds stresses group all turbulence effects. 

The closure problem is related to defining Reynolds stresses. Boussinesq may be considered the 
first researcher who attempted to model turbulence or effective shear stress resulting from 
cross-correlation of fluctuating velocities by introducing the concept of 'turbulent or eddy 
viscosity'. In 1877 he suggested that turbulent stresses could be replaced by the product of mean 
velocity gradients and turbulent viscosity." One employs either an algebraic relation, one- 
equation or two-equation models to evaluate the eddy viscosity, l 3  - " which is a property of the 
flow and not of the fluid. Some researchers have proposed Reynolds stress models which do not 
require an eddy viscosity concept. - 2 3  The application of such models for three-dimensional 
flows is unrealistic owing to the availability of only limited computational resources. 

In this study we have opted for a two-equation k-E (turbulence kinetic energy and rate- 
of-dissipation energy) closure model to define the eddy viscosity for incompressible flows. One 
may remark that not much experience exists with k--E finite element models when applied in 
near-wall regions. We start with a presentation of the standard k--E model which is mainly valid in 
the turbulent region (far-wall zone). The near-wall effects are simulated through wall functions 
which give boundary conditions for points situated in the turbulent zone. However, this proced- 
ure is not well adapted for complex flows, since the condition that the boundary be in the 
turbulent zone cannot generally be respected rigorously. The equations of the model and the 
boundary conditions given by the wall functions are both erroneously applied in such a case. The 
aim of our study is to demonstrate that the use of an extended version of the k--E model (low- 
Reynolds-number model) in combination with wall functions defined over the entire wall region is 
a much better choice. In Sections 4 and 5 an extended k--E model is presented which is valid in the 
near-wall (low-Reynolds-number) and far-wall (high-Reynolds-number) zones. The appropriate 
choice of wall functions in the near-wall zones is discussed in detail. A finite element model 
employing the eight-node hexahedral element with continuous velocities and local pressure is 
presented in Section 6. The pressure is locally eliminated by employing the penalized form of the 
continuity equation. Surface elements to introduce wall stresses, k--E conditions and pressure 
forces are discussed as well. A brief description of the solution strategy using a Newton-type 
method to solve for velocity, pressure, turbulence energy k and rate-of-dissipation energy E is 
given in the same section. Finally we validate the model by simulating the turbulent flow between 
two plates. We investigate mainly the validity of the k--E model to include low-Reynolds-number 
zones and various positions of near-wall boundary employing wall functions. The results are 
compared with those obtained from experimental measurements. 
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2. STANDARD k-& MODEL OF TURBULENCE 

The continuity equation for incompressible flows (density p = constant) is 

(1) 
aui 
axi 
- = 0, i = 1 , 2 , 3  (sum over repeated index), 

where ui is the velocity component and xi  is the Cartesian co-ordinate. 
The Navier-Stokes equations for the conservation of momentum are obtained by employing 

Newton’s laws of m o t i ~ n . ~ ~ * ’ ~  It may be stated: the external forces exeIted by the surroundings 
on the volume element are equal to the rate of increase of momentum in the volume plus the net 
rate of efflux of momentum out of the volume through its surface. The external forces are fluid 
stresses exerted on the surface and volume forces such as gravity force. We have 

apui  a a p  a t i j  
-+ - (pu.u . )+- - - -pFi=o,  i , j = l ,  2 ,3 ,  

a t  a x j  axi a x j  

where p is the pressure, t is the symmetrical viscous stress tensor and p F i  is the volume force, 
which is assumed zero. For Newtonian flows the viscous stresses are defined by 

where p is the fluid viscosity (N sm-’). Equations (1)-(3) represent a laminar or turbulent fluid 
behaviour. However, a numerical simulation model for turbulent flows employing these equa- 
tions would require very fine spatial and temporal discretization to capture correctly the 
interaction of large- and small-scale fluctuations. No present-day computational equipment has 
a capability for direct simulation of industrial flows. It is thus necessary to employ averaged 
versions of the Navier-Stokes equations where only large-scale fluctations are calculated. The 
influence of small-scale fluctuations is modelled in an approximate or empirical manner. In 1883 
Reynolds suggested representing a quantity f ( x ,  t )  as the sum of time-averaged quantity and 
a fluctuating term:” 

f(x, T ) ~ T ,  (f’)=O. (4) 

We may represent Reynolds’ filter in a more general form wheref(x, t )  is considered as sum of 
large-scale fluctuations (representable on an observable scale)y(x, t )  and small-scale fluctuations 
(non-observable scale) f’( x ,  t ) :  

f (x, t )  =%, t )  +f ’(x, t ) ,  f ( X >  t ) = < f > .  (5 )  

Reynolds averaging may be thought of as lowpass filter where all small-scale fluctuations of 
time-space are eliminated. One associates the following properties with the Reynolds-averaging 
operation:’ 

(f ’> =o, <f> =.E (6) 

<ff’>=O, <fs>=-G+<f’s‘>. (7) 
Equation (7) represents the most important property of Reynolds averaging. In effect, we 

assume that the frequency spectrum of small-scale fluctuations is far away from that of large-scale 
fluctuations, i.e. no interaction exists between the two scales. 
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The averaged Navier-Stokes equations (1) and (2) become 

where p is assumed constant and the Reynolds stresses are defined by 

Rij=(u; u;>, I I 1 9  p' = p - p .  (9) u! = u. - u. 
We introduce the concept of turbulent or eddy viscosity which relates Reynolds stresses to spatial 
gradients of averaged velocities. Following Boussinesq's proposition in 1877,' one obtains 

where v, is the eddy viscosity (m2 s-  ' ), 6, is Kronecker's symbol and p k  is the mean kineitc energy 
of fluctuations or turbulence: 

k = i C  Rii=$ (u;u; +u;u;+u;u;) .  (1 1) 

Using equation (lo), the closure problem of defining Rij is reduced to obtaining an expression 
for the eddy viscosity. It is obvious that vt is not characteristic of the fluid but of the flow. From 
dimensional analysis26 one may observe that the eddy viscosity is the product of a characteristic 
velocity k''' and a characteristic length k ' " / ~ ,  

where C, is an empirical constant and p~ is called the rate of mean turbulent viscous dissi- 
pation: ' 9 23 

& = V  (--) au; au: 
ax j  ax j  

The two turbulent quantities k and E satisfy the following transport relations at each point of 
the flow domain: 

ak - a k  a vl ak 
- + u  -- - v , s  +& =o, 
at l a x i  axi bkaxi  

a& - ac a vt ak  & E 2  

0 
-..----(--)-c at ' ax i  axi  axi  v ' k  - S + C , ,  -=o, k 

with 

aui aii j s=t  -+- 
( a x ,  a x i )  3 

i, j =  1 , 2 , 3  (sum over repeated index). 

The standard values of the five empirical constants of the model are13315 

C,=0*09, c,1=1*44, c,2=1'92, ffk=l*O, ff,=1.3. 

The transport equations for k--E (equations (14) and (15)) are obtained from the Navier-Stokes 
equations by assuming that the turbulence effects dominate at every point of the flow 
d ~ m a i n , ~ ~ , ~ '  i.e. all viscous terms are neglected before the turbulence terms. 
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Thus the standard k--E model is valid in regions where the viscous terms are small compared 
with the turbulence effects. It is not valid in the near-wall zones, which include the viscous and 
buffer sublayers. The popular approach is not to consider the near-wall zones and employ wall 
functions. However, this is not practical for complex flows and may lead to undesirable results in 
numerical implementation. The difficulties are related to locating the turbulent zone and the 
possibility of having an irregular near-wall surface boundary. A solution procedure for a numer- 
ical model will find the task of locating the mesh points in the turbulent zone during one iteration 
cycle highly impractical. 

In the following section we discuss various assumptions related to near-wall zones and the 
criteria employed to position the turbulent zone. 

3. NEAR-WALL ZONE 

The following assumptions are introduced in the near-wall zone. 

(i) The resultant shear stress zw in the plane parallel to the solid wall is the only dominant 
force. 

(ii) The value of z, is assumed constant in the near-wall zone. 
(iii) The zone is divided into three sublayers: viscous layer, buffer layer and turbulent layer. 

The shear friction velocity is defined by 

The non-dimensional distance y +  normal to the wall is employed to characterize the wall 
region: 

One may consider y + as the wall Reynolds number. The shear stress z, is assumed constant in the 
wall region, which extends from the wall (y + =0) to y + = 100. This region is composed of three 
sublayers. 

(i) Viscous sublayer (OGy'd5): in this region closest to the wall the turbulence effects are 
considered small relative to viscous terms. We have 

au 
P aY 
-=v-, leading to u + = y + ,  

where u is the tangential velocity in the plane of the wall 
(ii) Turbulent sublayer (30dy' < 100): in this region farthest from the wall the viscous terms 

are small relative to turbulence effects: 

By employing the mixing length expression 

au 
v,=(xy) '  l G l ,  with x=0.4, 
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we obtain for a smooth wall l 1  

u +  = 2.5 Iny + + 5.5. 

(iii) Transition or buffer zone (5 Q y + < 30): in this intermediate region both viscous and 
turbulence effects are present. The velocity profile is assumed logarithmic and the coeffic- 
ients are adjusted to define a continuous velocity field in the complete wall zone. For 
a smooth wall we obtain 

u+ = 5.0lny' - 3-05 (21) 

Thus the law of the wall (constant shear stress) allows us to determine the shape of the velocity 
profile in the wall region (y + < 100). 

As mentioned earlier, the standard k--E model cannot be used very near the wall. However, 
boundary layer flows can be treated by matching the high-Reynolds-number flow with the 
law-of-the-wall profile at the first grid point away from the wall. The point's distance from the 
wall should not be too large in order to lie inside the wall region ( y  ' < 100), but also not small in 
order that the equations of the model remain valid (y + 2 30). In other words, the point must be in 
the turbulent layer. 

The shear stress condition applied at this point is deduced from (20): 

U 

P 2.5 lny+ + 5.5 

The boundary conditions for k and E can be found using the assumption that dissipation equals 
production in the turbulent zone: 

This procedure is generally known as the wall function technique. 
Now, for complex flows, ensuring that each boundary grid point stands in the turbulent layer 

can become quite a tedious task, since the friction velocity can vary very rapidly for such flows. 
Moreover, the real position y of the boundary may become highly irregular. It is expected that 
updating the near-wall points will involve important oscillations of mesh positions and the 
strategy is not adaptable for practical situations. 

This difficulty can be overcome by using a low-Reynolds-number k--E model, which is valid up 
to the wall. The computation can then cover the enitre flow domain, including buffer and viscous 
zones. However, the computational cost would be much higher, since a very fine grid is needed for 
the wall region because of the very steep gradients one finds there. 

The aim of the present study is to demonstrate that both approaches can be coupled to obtain 
a method no more expensive than the classical one but which does not suffer from the limitations 
we have mentioned earlier. The idea is to select an extended k-E model as easy to implement as 
the standard one and to develop wall functions which are valid over the whole wall region, 
including buffer and viscous layers. Positioning the boundary is then an easy task, since the only 
condition to satisfy is to stay in the wall region. Of course, a computation up to the wall is within 
the scope of such a model. 

4. EXTENDED k-& MODEL 

The averaged Navier-Stokes equations are valid in the near-wall (low-Reynolds-number) and 
far-wall (high-Reynolds-number) regions since the viscous and turbulent terms are retained 
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(equation (8), fij and Rij). Extension of the k-equation to the low-Reynolds-number zone requires 
simply that the viscous term vak/axj be added to equation (14). However, extension of the 
&-equation (equation (15)) to the near-wall region is not so straightforward, since E does not tend 
to zero as one approaches the wall as is the case with the velocity and k-terms. It may be 
mentioned that E equals the rate of mean turbulent viscous dissipation in the high-Reynolds- 
number region only. 

The extension is possible by introducing three weighting functionsf,,f,, and fEz for the three 
constants C,, Cel and CE2.  Using these weighting functions, equations (12), (14) and (15) become 

a k  - a k  a 
& at axi axi  

k Z  
v, = C,f, -, -+ ui [ (: + v )  g] - v,s + E =o, 

& 

The weighting functions depend on the local Reynolds numbers in the near-wall zone, which are 
defined by 

R,=-  k2 R,=- &GY 
VE’ V 

In References 27 and 29-34 different expressions for the weighting functions are suggested 
which are related to the extended k--E model (also called the low-Reynolds-number model). Our 
numerical experimentation permits us to retain the following expressions for fcl and hz: 

where A,, , AEZ and Bez are numerical constants. 
The choice off, is quite important for obtaining the desired results. Pate1 et al.35 have discussed 

this aspect on the basis of a comparison of seven low-Reynolds-number models with experimental 
results. It turns out that none of the suggested expressions forf, behaves correctly. Two of them, 
however, seem more satisfactory than the others, namely Launder and Sharma,zg 

and Lam and B r e m h ~ r s t , ~ ~  

where A,,, B, and D, are numerical constants. 
By calculating the individual terms of the exact transport equations for k and E using direct 

simulation data, Miner et ~ 1 . ~ ~  have found that the production term is the term most affected by 
changes in the wall damping function. From a comparison of this term (k-equation), calculated 
from direct simulation data and that modelled with S,, it appears that the Lam-Bremhorst 
expression gives best agreement.36 

In the extended model of equations (24) one must ensure that no term goes to infinity as 
k approaches zero in the near-wall region. By choosing AE2 = 1 in (26), the singular termfcze2/k 
approaches zero as k becomes small. 

The determination of a correct boundary condition for E is essential for obtaining reliable 
results with the extended model. An insight into the proper choice of &-value is obtained by 
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employing a Taylor series development of k and E near the wall. To start, we express the in-plane 
fluctuating components u’ and w‘ and the normal component u’ in terms of the wall distance 
y ( x - z  is the wall plane and y the normal direction): 

U ’ ( Y )  = a , y  + azy  2, U ’ ( Y  1 = b2 9, w ’ (  y ) =  c1y + czy2 .  (29) 
These relations satisfy the no-slip condition. The coefficients a l ,  a2,  . . . are functions of x,  z and 
t and the velocity is assumed to satisfy the incompressibility constraint. The expressions for k and 
E are 

k = + ( ~ ’ ~ + u ’ ~ + w ’ ~ ) = A y ~ + B y ~ + .  . . , E = V  ( - - ) = 2 v ( A + 2 B y + .  au: au: , . ), (30) a x j  a x j  

with 

It is possible to define different variants of the boundary condition for E which satisfy (30). In 
References 31 and 33 a condition is employed which is difficult to implement in finite element 
modelling, namely 

E y = O = v  (6) 
y = o  

Patel et employ a simpler condition 

=0, leading to B=O. (3y=o 
However, the simulation of Chapman and Kuhn3’ tends to invalidate the choice of B=O. They 
suggested the following expression: 

(33) 
k 

E, = 0 = ( 4 v  7 - &) 
y=small distance 

This condition is easy to implement and leads to stable results. 
In summary, the extended model is defined by equations (24) along with the weighting 

functions given by equations (26)-(28). This model is valid up to the wall and the boundary 
condition for E on the wall is given by equation (33). In the following section we present 
appropriate wall functions which allow us to position the flow domain in the near-wall zone, 
leading to important computational savings. 

5. CHOICE OF WALL FUNCTIONS 

The extended k--E model allows us to simulate the flow behaviour in the complete wall region 
extended to the wall. However, it is a costly option since one requires an extremely fine mesh in 
the wall region. It is preferable if the flow domain is not fully extended to the wall but is limited to 
near-wall zones. One then requires the boundary conditions on shear stress, k and E for points 
situated in this zone. These conditions must be compatiable with the positions of points, which 
may lie in the viscous, buffer or turbulent sublayer. We present an extension to wall functions 
which are valid for the complete wall region. 



EXTENDED k-& FINITE ELEMENT MODEL 1333 

Assuming the boundary points are situated in the wall region, the sublayer associated with 
a point is obtained by calculating y + from (17). The corresponding value of z, is easily calculated 
from equation (18), (20) or (21) in terms of u (see equation (22) for the turbulent layer). 

For the conditions of k and E one cannot employ equations (23) for points near the wall. For 
small y + one would obtain a non-zero value of k and a large value for E which is not acceptable. 
The correct behaviour of k and E near the wall is obtained from series expansion of equations (30). 
By retaining terms up to y 2  for k and E with B=O, we have 

The coefficients A and C are determined by equating the values of k and E to those defined by 
equations (23) at some non-dimensional distance 6 from the wall: 

(35) 
cv2 (u*)4 -E(yf=6)=2vA+-62=-. 

( U * l 2  XVS 
Av2  (u*)2 

Jc,’ ( u * ) 2  d2=-  k ( y + = S ) = -  

Solving equations (35)’ we obtain 

When a point is situated in the zone y + 2 6, equations (23) define the values of k and E. For 
y + 6 6 we chose 

The experimental results suggest 8 <d < 12. 
In Table I various aspects of the extended or low-Reynolds-number k--E model are sum- 

marized. In Figure 1 we present the standard k--E conditions (equations (23)) and the proposed 
k--E conditions (equations (37)) for the complete wall zone. The non-dimensional quantities 
k + = k / ( u * ) 2  and E + = E v / ( u * ) ~  are plotted against y + .  

6. FINITE ELEMENT MODEL 

For finite element applications we employ the stationary version of the k--E model. All quantities 
are used in the non-dimensional form 

where L and V are the large-scale characteristic length and velocity respectively. The complete 
system of equations, with the incompressibility constraint in a penalty form, is written as 

-0, i, j =  1 , 2 , 3  (sum over repeated index), (39) a auj P - ( u j u j + p 6 i j - z i j ) = o ,  
axj a x j  R. 
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Table I Extended k--E model 

Non-dimensional quantities: 

Average Navier-Stokes equations: 

aui aui a - - - R i j = v , ( L + L ) - 4 k a i j  ati. aii. axi at axj a x j  axi  -=O, - +- ( ~ j ~ j  + Rij + j6i j -  f i j ) = O ,  

k--E extented relations: 

V ,  =L C f k 2  -+u.--”[ ak - dk ( ;+v)$] -v , s+&=o 
& at ‘ a x i  axi 

fEl &, and f ,  given by equations (26)-(28) 

Boundary conditions in near-wall zone: z,, equation (18) (0 5 y + 5 S), equation (20) (5 < y + d 30) or equation 
(21) (3O<y+<lOO); k and E ,  equations (23) ( y + > 6 )  equations (37) ( y + < 6 )  with 8 < 6 < 1 2  

Boundary conditions on wall: u l ,  k =  0; E ,  equation (33) 

0.3 
I I  

0 Laufer (1954) 

0.04- 
0 6 20 40 60 8oy+100 0 6 20 40 60 80y+100 

Figure 1. Near-wall k--E boundary conditions 

with 
shear flux Ti,=( L+L) (-+-), aui auj 

penalty coefficient 1 = lo8, R,  R,, a x j  ax ,  

1 s=-(-+-) 1 au, auj 2 
Re, 2 a x j  axi  ’ k-production dissipation E,  = - - S + E ,  

E 2  

k &-production dissipation E,= -C,f,C,lf,l kS+C,,f,, -. 
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The weighting functionsf,,f,l areA2 are given by equations (26)-(28) and the five constants are 
C, = 0.09, CZ1 = 1.44, CeZ = 1.92, b k  = 1.0 and o8 = 1.3. The different Reynolds numbers are 

k 2  k Z  V L  
v Re, & E 

_- - C, f, - = v, ( k ,  E, y in non-dimensional form), R, = R e  - , R, = R,y & . Re=-- ,  

The weak Galerkin variational form is given as3' 

(bir,f;+6un fn) dS=O V&, 6 p ,  -L 
+ (6kq,,+S~q,,)dS=O V6k,  8~ b 

where hi, dp, 6 k  and 6~ are the Galerkin-type test functions, 6e i j= f (a6u i /ax j+a6u , /ax i ) ,  f .  and 
are the normal and tangential forces at the appropriate boundary respectively and q k , ,  and 

qEn are the normal k- and &-flux respectively. 
We employ an eight-node hexahedral element (Figure 2)  with a Co-approximation for velocity 

components ui and k--E. The pressure is assumed constant over each element and is eliminated at 
the element level. Although this element does not satisfy the LBB conditions of stability, it gives 
good results for smooth boundary  condition^.^' 

In our study we have considered either Neumann or Dirichlet boundary conditions for k-8; 

thus the surface integrals in wk, are zero,The surface terms in W,, are useful in imposing pressure 
gradients via fn and wall shear stress viaf,. We have developed a special four-node surface element 
(Figure 3) with three velocity components ui as variables. This element is employed to introduce 
either the pressure value or the tangential stress on the near-wall boundaries with normal velocity 
considered zero. 

s 
t 

-1 I 5  I 1\ 
- 1 5 q I 1  5 xz 
- 1 s y s 1  ' x1 

reference element real element 

Figure 2. Hexahedral element 
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x3 

Finite element discretization yields a non-linear system of equations for ui, k, and E. We employ 
a solution strategy where the Navier-Stokes and k--E equations are solved in a decoupled manner. 
A Newton-type method is used to solve each set of equations. The Reynolds number Re in all 
diffusion terms is progressively increased from laminar to real flow values. This is achieved by 
progressively increasing the value of a relaxation coefficient a from a small value to unity in the 
following terms: 

During the early stages any appearances of negative values of k and E are flagged to zero. One 
also employs an underrelaxation coefficient for the iteration update of k and E.  Different aspects 
of the solution strategy are summarized in Table 11. 

7. VALIDATION 

In this study we have limited ourselves to the validation of the extended model applied to a flow 
between two plates. This flow has been experimentally studied by C~mte-Bellot.~' The numerical 
simulation with 17 different computations is undertaken to investigate different aspects: 

(i) performance of low-Reynolds-number k--E model with &-boundary condition of Chapman 
and K ~ h n ~ ~  (equation (33)); the mesh is extended up to the wall 

(ii) performance of the model employing wall functions (equation (18), (20) or (21) for t, and 
equations (23) or (37) for k and E )  with the mesh boundary situated at differents positions in 
the near-wall zone (0 < y < 0.05) 

(iii) assess the influence and precision of weighting functionsf,,&, and&, (equations (26)-(28)) 
for different near-wall mesh positions 

(iv) assess the influence of inflow and outflow boundary conditions, especially the pressure 
differential conditions and Neuman condition on k--E 

(v) identify certain aspects of solution strategy which will be employed for capturing complex 
flows. 

rl 
t u1 

u2 

u3 

reference element real element 
Figure 3. Quadrilateral boundary element 
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Table 11. Solution strategy 

*Select initial solution: {uo} ,  { k o } ,  { E O }  

- Obtain laminar solution with low Re: {uo} 
- Obtain { k o } ,  { E ~ }  with { u o }  and production-dissipation terms set to zero 

*Solution phase-incremental Reynolds number update strategy 

0 For each a=ao, a,, . . . , 1: Re=uRe 
0 k--E solution phase 
- Update boundary conditions 
- Solve for k-c 
-Update: { k } = { k } + o { k } ;  O < w < l  

- Flag negative k,  E to zero 

- Update eddy viscosity. Employ a smoothing if necessary 
- Solve non-linear equations. Iterate if necessary 
- Update: { u }  = { u }  + { Au} 

Solve for a new value of GI 

{ E }  = { E }  + o{ A&) 
0 NS solution phase 

0 Repeat k--E and NS phases till convergence 

* Evaluate required quantities: pressure field, shear stress, vortex field, etc. 

Figure 4. Near-wall k--E boundary conditions 

A mesh of 4 x 71 x 1 elements is employed to discretize a geometry of 1 x 1 x 0-01 as shown in 
Figure 4. The wall is situated at y =O and symmetry conditions are employed along five faces. The 
flow corresponds to a Reynolds number of 63 000 (Compte-Bellot obtains Re = 57 000 for the 
same flow with a velocity V= 10.5 m s-'  at the centre and a canal half-width of 0.09m). Since the 
flow quantities vary basically along the y-direction, we have employed one layer along the 
transverse z-direction and four layers of elements along the flow direction. It must be noted that 
with elements of greater size in the transverse direction (2-direction) we have found some 
difficulites in obtaining convergence. It appeared that the k--E system was very sensitive to a small 
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1.2 - 

1.0 - 

0.8 - 

0.6. 

0.4 - 

0.2 ~ 

0.01 

fcr ' 

lack of symmetry of the solution in the transverse direction due to round-off errors. The minimum 
size of element along the y-direction is O.OOO1 near the wall and 0.05 at the centre. 

A pressure gradient of 0-0175 is imposed along the inflow and outflow faces as shown in 
Figure 4. Comte-Bellot reported a pressure gradient of 0.01 50, which underestimated the flow in 
our simulation. All quantities are in normalized or non-dimensional form. Special boundary 
elements are employed to introduce a pressure condition which results in equivalent load vectors. 
It is found that the pressure condition is quite efficient and avoids the necessity of introducing the 
correct velocity profile as inlet condition. Otherwise a large number of elements along the 
x-direction may be required, which could become undesirable. 

The weighting functions Al and L2 defined by equations (26) are shown in Figure 5 with 
AE1 =0.05 and Aez = BEZ = 1. The functionf, proposed by Launder and Sharma (equation (27)) has 
given erroneous results for our study. This is in agreement with the study of Miner et which 
has shown that the damping functionf, proposed by Lam and B r e m h ~ r s t ~ ~  gives better results 

' I ' I .  I ' I ' 

loo, I 

0 20 40 60 8oy+loo 

wall region 

0 20 40 60 8Oy+loO 

wall region 

1.2 1 
fE2 

1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 
0 20 40 60 80y+100 

wall region 
Figure 5. Weighting functionsf,,f,, and LZ 
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than that of Launder and Sharma.29 We retained f, (equation (28)) proposed by Lam and 
Bremhorst with B, = 0.0165, D, = 20.5 and A, = 1. The behaviour off, is shown in Figure 5. 

7.1. Reference computation 

The reference computation represents the simulation of the flow with the mesh extended to the 
wall (Figure 4). We consider this computation as a basis for comparing the results obtained with 
the mesh boundary situated in different positions of the near-wall zone. 

At the wall the velocity components u l ,  u2, u3 and k are set to zero. The condition for the 
rate-of-dissipation energy E is defined by equation (33): 

4 k  
E y = O  = (R ,  -p- -E) 

y = O . O 0 1  
(44) 

A special strategy as described below is required to obtain a convergent solution even for such 
a simple flow, since inflow and outflow conditions are only related to pressure (no velocity or k--E 
profiles are prescribed). 

Phase 1. Initial estimates for velocity and k--E 
Choose u = w = 0 and flowwise velocity u = u, at the wall boundary. The Reynolds number is 
determined so that an almost plane profile is obtained with laminar calculations: 

Re = 8 and u, = 0.7, leading to 0.7 < u ( y )  < 0.707. 

Solve the Navier-Stokes equations. 
The k--E system is solved by setting the production-dissipation terms Ek and E, (equations 
(39)) to zero with the velocity field of step 1. At the wall k, and E, are set to a non-zero value 
( k ,  = 2 ~ , )  such that the effective Reynolds number is equal to Re = 8 of step 1: 

1 k: 1 
Ew 8 

= + C , - = -  

Start the decoupled resolution of the NS system and k--E systems. During this stage 
gradually relax k ,  and e , ( k , = 2 ~ , )  until ~,=0.01. The value of u, remains fixed at 0.7 
(about 50 iterations). 

Phase 2. Relaxation of u, and k ,  to zero 
1 Solve the decoupled system by slowly relaxing u, and k ,  to zero, keeping 

2. Obtain the final solution by setting E, to equation (44). 
In Figure 6 we present the simulated results for velocity u, turbulence kinetic energy k and 

rate-or-dissipation energy E. The velocity profile compares well with that obtained by experi- 
mental measurement4’ in the near- and far-wall regions. One can observe excellent agreement as 
well for the k-profile. We present a calculated &-profile for which no experimental measurements 
are available. In Figure 6(c) the k +  = k/ (u*)’  and E +  = E V / ( U * ) ~  profiles in the near-wall zones are 
presented along with those obtained with the wall functions of equations (23)  and (37). One can 
observe that the wall functions proposed are in agreement with the calculated values in the 
viscous sublayer (0 < y +  < 5) and in the turbulent sublayer defined by 70<y+ < 100. However, 
one notices significant differences in the zone 10 < y + < 50, which represents the buffer sublayer 
and part of the turbulent sublayer. Thus certain discrepancies in calculated results employing the 
wall functions when mesh points are situated in this zone may be expected. 

= 0.01 (about 4 0  
iteratiom). 
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A Comte-Bellot 

0.0 0.2 0.4 0.6 0.8 y 1.0 

a) velocity profile 
0.010 
k -  

0.008- A Comte-Bellot 

0.002- 

0.008 A Comte-Bellot 

0.0021 
0.0 0.2 0.4 0.6 0.8 y 1.0 

b) k-E profiles 

0 20 40 60 80y+100 

c) wall function comparison 

0.7- 
U '  

A Comte-Bellot 

0.00 0.01 0.02 y 0.03 

q------ 0.03 

0.0 0.2 0.4 0.6 0.8 y 1.0 

0 20 40 60 SOy+loO 

Figure 6. Reference computation 

7.2, Near-wall computations 

the near-wall zone, i.e. 
We have undertaken 16 computations related to different positions of the mesh boundary in 

yboundarv =0~0005,0~002,0~003,0~004,0~005, 0~oO7,0~01,0~012,0~016,0~02,0~025,0~03,0035,0~04,0~045,0~05 
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A boundary at 0.002 

0.0 0.2 0.4 0.6 0.8 y 1.0 0.0 0.2 0.4 0.6 0.8 y 1.0 

0.04 

0.031 

0.02 

0.01 
A boundary at 0.002 
- ref. computation 

0.00 - 
0.005 1 
Vt 

0.004 

0.003 

0.002 

0.001 

0.C" 

- ref. computation 
I 

0.0 0.2 0.4 0.6 0.8 y 1.0 0.0 0.2 0.4 0.6 0.8 y 1.0 

J I  I 

ref. computation 
boundary at 0.002 
wall function fork 

E+I - ref. computation 
,, A boundary at 0.002 

0.0- 
0 20 40 60 80y+100 

Figure 7. Results with boundary at y=O.002 (viscous sublayer y+ =5) 

or 
y + %  1, 5, 8, 10, 13, 18,26, 32,42, 53,66, 79,92, 105, 119, 132. 

The mesh configuration of the reference computation is so chosen that the element boundaries 
coincide with the different values of yboundary chosen for the near-wall case studies. For a given 
value of yboundary, one simply removes the elements situated in 0 < y < Yboundary. 

The shear stress z, and k--E boundary conditions on the near-wall boundary points are 
imposed using the wall functions. In the finite element model we make use of the special four-node 
boundary elements of Figure 3 to introduce these conditions. 
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1.21 I 

O . 1  A boundary at 0.007 
Oo2 - ref. computation 
0.0- 
0.0 0.2 0.4 0.6 0.8 y 1.0 

O - l  0.03 

0.02 

0.01 

0.00 

A boundary at 0.007 
- ref. computation 

0.0 0.2 0.4 0.6 0.8 y 1.0 

51 I 

A boundary at 0.007 

0 20 40 60 80y+100 

0.008, 

0.002- 

o.oock .  I .  I .  8 .  I .  

0.0 0.2 0.4 0.6 0.8 y 1.0 

0.005 1 

A boundary at 0.007 
- ref. computation 

O.oO0 1 
0.0 0.2 0.4 0.6 0.8 y 1.0 

0.3 
E+ - ref. computation 

A boundary at 0.007 

0.0,. I .  I . ,  . , . 
0 20 40 60 8Oy+lOo 

Figure 8. Results with boundary at y=0007 (buffer sublayer y +  =18) 

In order to obtain rapid convergence, the initial solutions for the velocity and k--E fields are 
deduced from those obtained with the reference computation. In general the solution converged 
in 10-15 iterations. In Figures 7-9 the results are presented for three different computations 
which correspond to three positions of boundary points in the viscous, buffer and turbulent 
layers. For each case we present the velocity k--E and eddy viscosity profiles. In the near-wall 
region the variations in kf and E +  are plotted against y'. The results are compared with those 
obtained with the reference computation. The results for k + and E + include comparison with the 
wall function values. 
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0.4. 
' 

0.2. 

0.01 

A boundary at 0.05 
- ref. computation 
' I ' I .  8 .  I .  O . O O o ? .  I .  0 .  I ,  I ,  

O Y /  0.03 

A boundary at 0.05 
- ref. computation 0.01 

0.00 

0.005 i 

0.002 

A boundary at 0.05 
- ref. computation 

0.OOo - 
0.0 0.2 0.4 0.6 0.8 y 1.0 0.0 0.2 0.4 0.6 0.8 y 1.0 

Figure 9. Results with boundary at y=0.05 (turbulent sublayer y +  = 132) 

Excellent agreement is observed when the mesh boundary is situated in the viscous sublayer 
(y = 0.002, y + x 5). One notices a discrepancy for results obtained with the mesh boundary 
situated at y = 0.007, which represents the buffer layer. As pointed out in Section 7.1, the difference 
between the estimated values of k--E using wall functions and those obtained from the reference 
computation will lead to certain variations. Moreover, y=0.007 (y + = 18) corresponds to the 
position which will give the largest discrepancy between the near-wall computation and the 
reference computation. 

For the computation with the boundary situated in the turbulent zone (y=O-05, y + = 132) the 
results compare well with those obtained by the reference computation. 

8. CONCLUSIONS 

In this study we have presented an extended k-is model which is valid in the low-Reynolds- 
number regions. The main feature of the model is proper choice of weighting functions which 
make the extension to the wall reliable. The choice of a correct boundary condition for the 
rate-of-dissipation energy E is crucial. We have observed that the Chapman and Kuhn condition 
(equation (33)) is most appropriate. 

In order to reduce the computational cost, a set of wall functions is proposed which give the 
required boundary conditions for T,, k and E for points situated in the viscous, buffer or turbulent 
sublayer. 
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The finite element model is based on the standard mixed variational formulation where the 
incompressibility constraint is penalized. We have employed different types of four-node bound- 
ary elements to handle the pressure boundary condition and the boundary conditions on t,, k 
and E in the near-wall regions. A Newton-type solution method is employed to solve the 
non-linear equations in a decoupled manner. 

The numerical results have been compared with those obtained from experimental 
measurements for a flow between two plates at Re = 63 000. We have shown that the proposed 
model with the weighting functions leads to reliable results when the mesh is extended to the wall. 
Sixteen computations with different mesh positions in the wall regions have shown that the wall 
functions proposed in this study are well adapted to the near-wall regions. 

Numerical experience has shown that the convergence characteristics of the k--E finite element 
model are not encouraging. Solving the Navier-Stokes equations poses no problem. We feel that 
a variant of the Newton-type method is quite acceptable. One may employ GMRES-typeZ8741 
solvers if necessary. However, there is a need for research effort to develop robust solvers for k--E 
finite element models with the mesh boundary situated anywhere in the wall regions. The 
following comments may be made. 

1. Initial estimates for k--E are important for proper convergence. 
2. Appearances of negative values for k and E are troublesome. Simply flagging them to zero 

may work in some cases but may not work in other situations. 
3. The choice of inflow/outflow conditions for velocity and k--E is important and requires 

further investigation. 
4. An esoteric use of relaxation factors for velocity and k--E update needs to be replaced by 

a well-defined strategy. We feel that the success of a solver is based on elaborating a strategy 
which is adaptable to different flows without the interference of a researcher. 

5. The use of time-marching schemes needs to be explored. The problem of negative k--E values 
and choice of relaxation factors will appear anyway. 
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